Comment on “Worldwide evidence of a unimodal relationship between productivity and plant species richness”

Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.

Fraser et al. (1) collected a worldwide data set to examine the relationship between productivity and species richness at global and local scales. They present their results as a direct contrast with the results of Adler et al. (2). However, their presentation obscures substantial areas of agreement, and where results between the two studies do differ, problems in Fraser et al.’s statistical analysis amplify the apparent differences.

The most important area of agreement is the low explanatory power of the “humped-back model” (HBM), in which species richness peaks at intermediate productivity and declines at low and high productivity. Fraser et al. fit a bivariate relationship between productivity and diversity that accounts for less than 1% of the observed variation in species richness in their data (Table 1, marginal Rs² for the Fraser et al. data set). The same is true for an analysis of the Adler et al. data set using a generalized linear mixed model (GLMM) with a block nested within-site random-effects structure (Table 1, marginal Rs² for the Adler et al. data set). Thus, the analyses in both Adler et al. and Fraser et al. demonstrate that productivity is an uninformative predictor of richness for most grasslands. A combined analysis using both data sets yields similar results (Table 1).

A second point of agreement is the difficulty of inferring process from bivariate patterns. The HBM can arise through a wide array of mechanisms (3, 4), meaning that the detection of a unimodal pattern does not provide evidence for any particular mechanism.

Adler et al. argued, “ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness” (2). Fraser et al. also concluded “more work is needed to determine the underlying causal mechanisms that drive the unimodal pattern” and called for “additional efforts to understand the multivariate drivers of species richness.”

The key disagreement between Fraser et al. and Adler et al. concerns the statistical significance of the quadratic term that determines the downward concavity of the richness productivity relationship. Adler et al. found little evidence for a concave-down relationship at the site scale (2% of 48 sites) (figure 2 in (2)) and at the global scale reported a significant effect but noted that it was sensitive to choices about which sites to include in the analysis (figure 3 in (2)). In contrast, Fraser et al. found that 68% of 26 site-level relationships were significantly concave-down (figure 2A in (1)), and in a global extent regression, across all sites, the negative quadratic term had a significant, and robust, P value. However, their analysis at the site level is flawed, and the presentation of the global regression in their main figure is misleading.

The site-level regressions reported by Fraser et al. and displayed in their figure 2A do not include the proper random-effects structure. An important feature of the Fraser et al. design was explicitly selecting areas (i.e., grids) to sample across productivity gradients within sites, whereas Adler et al. located blocks of plots randomly with respect to local productivity gradients. To properly reflect their sampling design, in which each “grid” of quadrats was located at one point along the within-site productivity gradient, each site-level

†Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, UT 84322, USA. 2U.S. Geological Survey, Wetland and Aquatic Research Center, 700 Cajundome Boulevard, Lafayette, LA 70506, USA. 3Department of Physiological Diversity, Helmholtz Center for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany. 4Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55105, USA. 5Department of Biology, Wake Forest University, Box 7325 Reynolds Station, Winston-Salem, NC 27109, USA. 6School of Environmental and Forest Sciences, University of Washington, 3501 NE 145th Street, Box 354115, USA. 7Ecology, Evolution and Organismal Biology, Iowa State University, 251 Bessey Hall, Ames, IA 50010, USA. 8Department of Bioagricultural Sciences and Pest Management, Colorado State University, 307 University Avenue, Fort Collins, CO 80523, USA. 9School of Natural Sciences, Trinity College Dublin, University of Dublin, Zoology, Dublin 2, Ireland. 10School of Life Sciences, Sun Yat-sen University, Xingang Xi Road 135, Guangzhou, 510275, China. 11Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA. 12Department of Biology, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK. 13Grassland, Soil, and Water Research Laboratory, USDA-ARS, 808 East Blackland Road, Temple, TX 76502, USA. 14School of Earth and Environmental and Biological 457-a Sciences, Queensland University of Technology (QUT), Gardens Point, Brisbane, Queensland, Australia, 4001. 15Department of Entomology, University of Maryland, 4112 Plant Sciences, College Park, MD, 20742, USA. 16School of Life Sciences, University of KwaZulu-Natal, 1 Carbis Road, Pietermaritzburg, 3201, South Africa. 17Department of Biology, Ecology and Biodiversity group, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands. 18Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK. 19Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany. 20School of Biological Sciences, University of Nebraska, 211 Manter Hall, Lincoln, NE 68588, USA. 21Department of Biology, Doane College, 1014 Boswell Avenue, Crete, NE 68333, USA. 22Department of Integrative Biology, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada N1G 2W1. 23Department of Plant and Soil Science, University of Kentucky, N-222D Ag Science North, Lexington, KY 40546-0091, USA. 24Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599, USA. 25School of Biological Sciences, Monash University, Clayton Campus, Wellington Road, Clayton 3800, Victoria, Australia. 26Department of Ecology, Environment and Evolution, La Trobe University, Kingsbury Drive, Bundiora 3086, Victoria, Australia. 27Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA. 28Department of Forestry, Agriculture and Water, Southern Patagonia National University-INTA-CONICET, CC 332 (CP 9400), Río Gallegos, Santa Cruz, Patagonia, Argentina. 29Commonwealth Scientific and Industrial Research Organisation Land and Water, Private Bag 5, Wembley, WA 6913, Australia. 30Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. 31Department of Ecology, INIBIO (CONICET-UNC), Quintal 1250, Bariloche (8400), Rio Negro, Argentina. 32School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, 90 South Street, Murdoch, Western Australia 6150. 33School of Biological Sciences, University of Sydney, University Library Building, A08, University of Sydney, Sydney, NSW, 2006, Australia. 34Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA. 35Department of Entomology and Nematology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA. 36Corresponding author. E-mail: atredenn@gmail.com (Corresponding authors that led the analysis and wrote the paper. All other authors, listed alphabetically, are Nutrient Network members and/or coauthors of Adler et al. (2011) who sign our Comment in support to show consensus among the Nutrient Network.)
Table 1. Results from global-extent GLMMs for both data sets. Results from regressions with and without a quadratic effect of productivity on species richness across all sites. Both models include a random-effects structure of site nested within grid (Fraser et al.) or block nested within site (Adler et al.). Marginal and conditional R^2 values estimated using (7, 8). For the combined analysis, we use the same grid (or block) nested within site random-effects structure and also include a “study” random effect.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Model type</th>
<th>Marginal R^2 (variance explained by fixed effects)</th>
<th>Conditional R^2 (variance explained by fixed + random effects)</th>
<th>Root mean square error (in units of species number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraser et al.</td>
<td>Linear</td>
<td>0.00007</td>
<td>0.84</td>
<td>8.5</td>
</tr>
<tr>
<td>Fraser et al.</td>
<td>Quadratic</td>
<td>0.009</td>
<td>0.84</td>
<td>8.3</td>
</tr>
<tr>
<td>Adler et al.</td>
<td>Linear</td>
<td>0.00007</td>
<td>0.79</td>
<td>7.7</td>
</tr>
<tr>
<td>Adler et al.</td>
<td>Quadratic</td>
<td>0.001</td>
<td>0.78</td>
<td>7.7</td>
</tr>
<tr>
<td>Combined</td>
<td>Linear</td>
<td>0.000005</td>
<td>0.82</td>
<td>8.4</td>
</tr>
<tr>
<td>Combined</td>
<td>Quadratic</td>
<td>0.003</td>
<td>0.82</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Fig. 1. Species richness as a function of biomass production at the site level (colored lines) and at the global extent (heavy black line). These regressions are the same as presented by Fraser et al., except that we included a grid random effect for the site-level regressions, and we show the proper global extent regression line from a GLMM with grid nested within site. Nonsignificant regression fits are not plotted.
REFERENCES AND NOTES
5. We used the “lme4” package in the statistical programming environment R to fit the GLMMs at the site and global extents. Some models struggled to converge on coefficient estimates, a well-known issue with mixed-effects models. We conducted the analyses using different optimizers to make sure that our results are robust (they are), and we did our own checks of model diagnostics to make sure that the warnings could be ignored (they could). Lastly, we fit a hierarchical mixed-effects model using a Bayesian approach to make sure we obtained consistent results (we did). All of our analyses and results can be found on GitHub at http://github.com/atredennick/prodDiv and as release v0.1, https://github.com/atredennick/prodDiv/tag/v0.1.
6. There are four sites, out of 28, that have only two grids. In only one case did this result in inadequate fits of the GLMM model with a “grid” random effect. We therefore fit that one site with a generalized linear model with no random effects.
8. J. Lefcheck, R-squared for generalized linear mixed-effects models (2014); https://github.com/jslefche/rsquared.glmm

ACKNOWLEDGMENTS
We thank L. Fraser and colleagues for making their analyses and data openly available. D. Johnson, USGS, provided comments on an earlier version of the manuscript. J.B.G. was supported by the USGS Ecosystems and Climate and Land Use Change Programs. The use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. USDA is an equal opportunity employer. We also acknowledge support from the National Science Foundation Research Coordination Network (NSF-DEB-1042132) and Long Term Ecological Research (NSF-DEB-1234162 to Cedar Creek LTER) programs, and the Institute on the Environment (DG-0001-13).

16 October 2015; accepted 17 December 2015
10.1126/science.aad6236
Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness"
Andrew T. Tredennick et al.
Science 351, 457 (2016);
DOI: 10.1126/science.aad6236

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of April 8, 2016):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
/content/351/6272/457.1.full.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
/content/351/6272/457.1.full.html#related

This article cites 5 articles, 2 of which can be accessed free:
/content/351/6272/457.1.full.html#ref-list-1

This article has been cited by 1 articles hosted by HighWire Press; see:
/content/351/6272/457.1.full.html#related-urls

This article appears in the following subject collections:
Ecology
/cgi/collection/ecology
Technical Comments
/cgi/collection/tech_comment